Transfer Learning
Transfer learning is a powerful technique in deep learning that allows us to leverage pre-trained models to solve new tasks with limited data. In this blog post, we’ll walk through a practical example of transfer learning using PyTorch. We’ll fine-tune a pre-trained ResNet18 model to classify images of ants and bees from the Hymenoptera dataset, downloaded from Kaggle. By the end, you’ll understand how to set up the dataset, apply data transformations, train the model, and visualize predictions—all with a few lines of code!
What is Transfer Learning?
Transfer learning involves taking a model trained on a large, general dataset (like ImageNet) and adapting it to a specific task. Instead of training a neural network from scratch, which requires massive data and computing resources, we start with a pre-trained model and tweak it for our needs. This approach is especially useful when working with small datasets, as it reduces training time and the need for extensive labeled data.
In this example, we’ll use ResNet18, pre-trained on ImageNet, and fine-tune it to distinguish between ants and bees—a binary classification task.
Code:
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
from PIL import Image
from tempfile import TemporaryDirectory
# Kaggle API setup
os.environ["KAGGLE_USERNAME"] = "tspradeepkumar" # Replace with your Kaggle username
os.environ["KAGGLE_KEY"] = "740d0138672a033f5e2020390c3cb021" # Replace with your Kaggle API key
from kaggle.api.kaggle_api_extended import KaggleApi
# Enable CuDNN benchmarking for performance
cudnn.benchmark = True
plt.ion() # Enable interactive mode for matplotlib
# Download Hymenoptera dataset from Kaggle if not already present
data_dir = './hymenoptera'
if not os.path.exists(os.path.join(data_dir, 'train')):
print("Downloading Hymenoptera dataset from Kaggle...")
api = KaggleApi()
api.authenticate()
api.dataset_download_files('thedatasith/hymenoptera', path=data_dir, unzip=True)
print("Dataset downloaded and extracted.")
else:
print("Hymenoptera dataset already exists.")
# Data transformations for training and validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
]),
}
# Load datasets and create dataloaders
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper to show images
def imshow(inp, title=None):
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001)
# Show a batch of training data
inputs, classes = next(iter(dataloaders['train']))
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
# Training function
def train_model(model, criterion, optimizer, scheduler, num_epochs=5):
since = time.time()
with TemporaryDirectory() as tempdir:
best_model_path = os.path.join(tempdir, 'best_model.pt')
torch.save(model.state_dict(), best_model_path)
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
for phase in ['train', 'val']:
model.train() if phase == 'train' else model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
torch.save(model.state_dict(), best_model_path)
print()
time_elapsed = time.time() - since
print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
print(f'Best val Acc: {best_acc:.4f}')
model.load_state_dict(torch.load(best_model_path))
return model
# Visualization of model predictions
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for inputs, labels in dataloaders['val']:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images // 2, 2, images_so_far)
ax.axis('off')
ax.set_title(f'Predicted: {class_names[preds[j]]}')
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
# Predict a single image
def visualize_model_predictions(model, img_path):
model.eval()
img = Image.open(img_path)
img = data_transforms['val'](img)
img = img.unsqueeze(0).to(device)
with torch.no_grad():
outputs = model(img)
_, preds = torch.max(outputs, 1)
plt.figure()
plt.title(f'Predicted: {class_names[preds[0]]}')
imshow(img.cpu().data[0])
# Load pretrained ResNet18 and modify for binary classification
model_conv = models.resnet18(weights='IMAGENET1K_V1')
for param in model_conv.parameters():
param.requires_grad = False
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
model_conv = model_conv.to(device)
# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
# Train the model
model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler, num_epochs=5)
# Visualize model performance
visualize_model(model_conv)
# Predict on a specific image
visualize_model_predictions(model_conv, os.path.join(data_dir, 'val', 'bees', 'bees2.jpg'))
plt.ioff()
plt.show()
Comments
Post a Comment