Skip to main content

Featured Post

Simulation of URDF, Gazebo and Rviz | ROS Noetic Tutorial 8

Design a User-defined robot of your choice (or you can use the URDF file) and enable the LIDAR Scanner so that any obstacle placed on the path of the light scan will cut the light rays. Visualize the robot in the Gazebo workspace, and also show the demonstration in RViz.   (NB: Gain knowledge on wiring URDF file and .launch file for enabling any user-defined robot to get launched in the gazebo platform.) SLAM : One of the most popular applications of ROS is SLAM(Simultaneous Localization and Mapping). The objective of the SLAM in mobile robotics is to construct and update the map of an unexplored environment with the help of the available sensors attached to the robot which will be used for exploring. URDF: Unified Robotics Description Format, URDF, is an XML specification used in academia and industry to model multibody systems such as robotic manipulator arms for manufacturing assembly lines and animatronic robots for amusement parks. URDF is especially popular with users of the Robo

Constrained Application Protocol (CoAP) using Node JS

Constrained Application Protocol using Node JS

Constrained application protocol is shortly called as CoAP and its based on Request Response Model where a browser or application will be requesting for a resource from the server. The resource would be a sensor reading like temperature, humidity, heartbeat, etc. 

For complete explanation of the source code and the demo please go through the video:


CoAP can be developed with many programming or scripting languages like:

  1. Python
  2. Node JS
  3. Contiki OS

In this article, I will be writing or explaining the source code of CoAP using Node JS and this can be demonstrated with a plugin name called Cu Plugin for Chrome Browser. There are many CoAP client available like coap, libcoap, etc in Linux OS and Cu Plugin being a easier and common approach for a client. 

You can refer the complete

This program first starts the CoAP Server and accept only the JSON format headers, else it will throw the error number '4.06'. 

Based on the request URL (req.url), the incoming requests will be handled by the server and responded with json based sensor values namely: for example, for "temperature", the server respond with {'temperature':988}. The values generated her is baaed on a random integer, in case of real sensor attached to the sensor, it can send those information as well. 

Here is the source code of the CoAP program.  The name of the file is coap.js 

var coap = require('coap');

function randomInt(min,max) {

return (Math.floor(Math.random()*(max-min) + min));
}

var portNumber=5683;
coap.createServer(function (req,res) {
console.info('CoAP device got a request from %s', req.url);
if(req.headers['Accept'] != 'application/json') {
res.code='4.06';
return res.end();
}
switch(req.url) {
case "/co2":
displayOutput(res, {'Co2':randomInt(0,1000)});
break;
case "/temperature":
displayOutput(res, {'Temperature':randomInt(-10,50)});
break;
case "/humidity":
displayOutput(res, {'Humidity':randomInt(0,100)});
break;
default:
displayOutput(res);
}
}).listen(portNumber);
console.log('CoAP Server is started at port Number 5683');

function displayOutput (res,content) {
if(content) {
res.setOption('Content-Format','application/json');
res.code='2.05';
res.end (JSON.stringify(content));
} else {
res.code='4.04';
res.end();
}
}
//End of Program
To install the packages in Linux, here is the command
$ sudo apt update
$ sudo apt install nodejs npm
$ npm install coap
The above program can be run using the command 
$ node coap.js 
The request are  
coap://localhost:5683/co2
coap://localhost:5683/temperature
coap://localhost:5683/humidity

The following will be the output
{'Co2':899}
{'Temperature':45}
{'Humidity':67}
This will start the server and the client can browse the server through the plugin called Cu plugin in Google Chrome Browser. There is a small work around to do the customisation. Please follow the video for enabling the Cu plugin in Google Chrome browser. 

Here is the output screen shot of the above request.
CoAP
CoAP Client (Cu) plugin


Comments

Popular posts from this blog

Installing ns3 in Ubuntu 22.04 | Complete Instructions

In this post, we are going to see how to install ns-3.36.1 in Ubuntu 22.04. You can follow the video for complete details Tools used in this simulation: NS3 version ns-3.36.1  OS Used: Ubuntu 22.04 LTS Installation of NS3 (ns-3.36.1) There are some changes in the ns3 installation procedure and the dependencies. So open a terminal and issue the following commands Step 1:  Prerequisites $ sudo apt update In the following packages, all the required dependencies are taken care and you can install all these packages for the complete use of ns3. $ sudo apt install g++ python3 python3-dev pkg-config sqlite3 cmake python3-setuptools git qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar gsl-bin libgsl-dev libgslcblas0 wireshark tcpdump sqlite sqlite3 libsqlite3-dev  libxml2 libxml2-dev libc6-dev libc6-dev-i386 libclang-dev llvm-

Installation of NS2 (ns-2.35) in Ubuntu 20.04

Installation of NS2 (ns-2.35) in Ubuntu 20.04 LTS Step 1: Install the basic libraries like      $] sudo apt install build-essential autoconf automake libxmu-dev Step 2: install gcc-4.8 and g++-4.8 open the file using sudo mode $] sudo nano /etc/apt/sources.list Include the following line deb http://in.archive.ubuntu.com/ubuntu bionic main universe $] sudo apt update $] sudo apt install gcc-4.8 g++-4.8 Step 3:  Unzip the ns2 packages to home folder $] tar zxvf ns-allinone-2.35.tar.gz $] cd ns-allinone-2.35/ns-2.35 Modify the following make files. ~ns-2.35/Makefile.in Change @CC@ to gcc-4.8 change @CXX@ to g++-4.8 ~nam-1.15/Makefile.in ~xgraph-12.2/Makefile.in ~otcl-1.14/Makefile.in Change in all places  @CC@ to gcc-4.8 @CPP@ or @CXX@ to g++-4.8 open the file: ~ns-2.35/linkstate/ls.h Change at the Line no 137  void eraseAll() { erase(baseMap::begin(), baseMap::end()); } to This void eraseAll() { this->erase(baseMap::begin(), baseMap::end()); } All changes made Step 4: Open a new termi

Installation of NS2 in Ubuntu 22.04 | NS2 Tutorial 2

NS-2.35 installation in Ubuntu 22.04 This post shows how to install ns-2.35 in Ubuntu 22.04 Operating System Since ns-2.35 is too old, it needs the following packages gcc-4.8 g++-4.8 gawk and some more libraries Follow the video for more instructions So, here are the steps to install this software: To download and extract the ns2 software Download the software from the following link http://sourceforge.net/projects/nsnam/files/allinone/ns-allinone-2.35/ns-allinone-2.35.tar.gz/download Extract it to home folder and in my case its /home/pradeepkumar (I recommend to install it under your home folder) $ tar zxvf ns-allinone-2.35.tar.gz or Right click over the file and click extract here and select the home folder. $ sudo apt update $ sudo apt install build-essential autoconf automake libxmu-dev gawk To install gcc-4.8 and g++-4.8 $ sudo gedit /etc/apt/sources.list make an entry in the above file deb http://in.archive.ubuntu.com/ubuntu/ bionic main universe $ sudo apt update Since, it&#