Skip to main content

MANET Routing Protocols using ns3

#AODV #OLSR #MANETs #DSDV #DSR

Download the Code here: 
https://drive.google.com/open?id=1OkVOsifjN9UfQjPGvfR7OuS-x_GBRgCV

Check the Video for Detailed instruction and how to use the plots, graphs and source code.


Comparison of MANET routing Protocols 1. AODV
2. DSDV
3. DSR
4. OLSR
using NS3 (Network Simulator 3)
B.Tech, M.Tech, PhD...
1. Reactive Vs Proactive routing
2. PErformance comparison of MANET protocols
3. AODV Vs DSDV Comparison

https://www.nsnam.com and also at my channel.

What Version: ns-3.29
My Ubunut OS is: Ubuntu 18.04

This file we are going to use for our simulation:
/home/networks/ns-allinone-3.29/ns-3.29/examples/routing/manet-routing-compare.cc

Once you under stand the code, now lets run this example

Step 1: Copy the above file in to ~ns-3.29/scratch/ folder

Step 2: Understand this code.
Step 3: Run this code
Open the terminal, Go to ns-3.29 and run the following command

$] ./waf --run scratch/manet-routing-compare

enable the following header file

#include "ns3/flo…

Electrical Machine Design (equations)

Factors

DC Machine

Transformers

Induction Machines

Synchronous Machines

Output Equation Pa=CoD2Ln, where Pa=P/h for generators, Pa=P for motors For Single Phase
Q=2.22 f Bm Ai Kw Aw d 10-3
For Three Phase
Q=3.33 f Bm Ai Kw Aw d 10-3
Q=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * h
Q=CoD2 L ns
KVA Input Q=
HP * 0.746 / Cos f * h
For Turbo alternators
Q=1.11Bavac KwsVa2 L 10-3/ns
Output Coefficient Co=Bav ac* 10-3 where Bav-magnetic loading and ac - electric loading DNA Co=11 Kws Bav ac 10-3 Co=11 Kws Bav ac 10-3
Choice of Magnetic Loading
Flux Density in Teeth Frequency of Flux Reversals Size of machine DNA Magnetizing current, Flux Density, Iron loss Iron loss, Stability, Voltage Rating, Parallel Operation, Transient ShortCircuit current
Choice of Electric Loading
Temperature rise,
speed of machine, Voltage, Armature reaction, Commutation
DNA Overload Capacity, Copper losses, Temperature rise, Leakage Reactance Copper loss, Synchronous reactance, Temperature rise, Stray Load losses,
Voltage rating
Flux Density
Yoke – 1.3 to 1.6 Wb/m2
Pole – 1.2 to 1.7
Air Gap – 0.4 to 0.6
Armature teeth – 1.5 – 2.2
Armature core – 1.0 to 1.5
1. 0 to 1.4 wb/m2 for Distribution Transformer
1.2 to 1.5 for power Transformers
Stator tooth
1.3 to 1.7 Wb/m2
Rotor tooth
1.3 to 1.7 Wb/m2
Current Density
Large Machine with strap wound conds – 4.5A/mm2
Small M/c with wire wound conds – 5A/mm2
High speed - 6 to 7A/mm2
General - 4 to 7A//mm2
1.1 to 2.2 A/mm2- small Tr..
2.2 to 3.2 – large power Tr..
5.4 to 6.2 – Large power Tr with Forced circulation
In rotor bar 4 to 7A/mm2 Current density in armature conductor
d = 3 to 5A/mm2
Main Dimension D- Diameter of the armature, L- Armature Length Hw (Height of window) and Ww (width of Window) D –diameter of stator bore
L- Length of Stator core
D –diameter of stator bore
L- Length of Stator core
L/τ Ratio
0.45 to 1.1
b/τ =0.64 to 0.72
(for Square pole face and Square Pole Section)
DNA minimum cost L/t =1.5- 2
good pf L/t = 1 – 1.25
good h L/t =1.5
overall design L/t =1
best pf t =Ö0.18L
L/t = 0.6 to 0.7
L/t = 1 to 5
Choice of Number of Poles Frequency Between 25 to 50 HZ
Current per parallel path is limited to 200A.
The Armature MMF Should not be large.
DNA DNA
For Bolted pole
Va = 50 m/s
Dovetail & T Head
Va=80 m/s
Length of Air Gap lg=(0.5 to 0.7)* ac* τ * 1.6*106 Bg Kg DNA Lg= 0.2 + 2ÖDL
Lg=0.2 + D
Lg=0.125+0.35D+L+0.015Va
Lg=(1.6ÖD) – 0.25
M/c with open type slots
L g/t = 0.01 to 0.015
M/c with maximum o/p
L g /t = 0.02
Turbo Alternator
Lg=0.5SCR act Kf10-6/Kg Bav
Slot Information Slot Area = Conductor area/ slot space Factor DNA Stator Slot Pitch Yss=p D/Ss Values of Stator slot pitch
Yss < 25mm – Low Volt M/c
Yss < 40mm – for 6KV & less
Yss < 60mm - m/c upto 15kV
Tooth Information DNA DNA width of stator tooth
Wts min = fm / 1.7(Ss/p) Li
Width of rotor tooth
Wtr min = fm / 1.7(Sr/p) Li
DNA
Core D=Di+2dc+2ds
Di Inner Dia.of armature
dc Depth of core
ds Depth of slot
Square Core Kc = 0.45
Two stepped core Kc = 0.56
Three stepped core Kc=0.6
Kc – core area factor = Ai/d2
Depth of stator core
dcs = fm / 2 Bcs Li
Depth of rotor core
dcr = fm / 2 Bcr Li
DNA
Armature MMF/Pole Up to 100Kw- 5000 or less
100 to 200Kw- 5000 –7000
500 to1000Kw 7500-10000
over1500Kw –Upto 12,500
DNA DNA
Armature MMF/pole
ATa = 2.7 Ip Tph Kws / p
Field MMF
ATf =SCR * Ata
Dispersion Coefficient DNA DNA s = Im/Isci
Im-Magnetizing current
Isci – ideal Short ckt current
DNA
Short Circuit Ratio
DNA DNA DNA The ratio of field current required to produce rated voltage on OC to field current required to circulate rated current at SC.
SCR = 1/Xd
Slot Loading DNA DNA Slot Loading = Zss Is
Conds/slot Zss=6Ts/Ss
Stator Conds = Ss Zss
DNA
Additional Information Current/Parallel path = Ia/p
For Wave Winding Ia/2
number of tubes =
[(Pi +Pc/q)-12.5 St] /8.8p dt lt
Rotor Bar current
Ib = 0.85 6Is Ts/Sr
End ring current
Ie=Sr Ib/p p
(Ss-Sr) should not be equal to
0,±p, ±2p, ±3p, ±5p, ±1, ±2, ±(p±1) ±(p±2)
Current thru the conductor
Iz = Iph/a
Peripheral Speed
Va = p D ns
DNA - Data Not Available (Data or the concept may not be there).
Reference: Electrical Machine design by A. K Sawhney

Comments

  1. sir,
    your work is excellent, but if we consider in design aspect, you should mention nomenclature also, other wise different text books will follow different nomenclatures.

    ReplyDelete
    Replies
    1. Hmm Yes. But I prepared this 13 years back, I think it still works. Now I am in Computer Science and Engg. So Lost the touch in this subject.

      Delete

Post a Comment

Popular posts from this blog

Routing in VANETs using ns3

Part 1
WAVE - Wireless Access for Vehicular environments. vanet-routing-compare.cc It might take more than an hour. The readers are requested to be patient. SUMO, VANETs, routing comparison 1. Explain the full source code (1550 lines of code) 2. Creating a real scenario using osm (Open Street Map Web Wizard) 3. Performance analysis for various vanet protocols. https://www.nsnam.com Location of the source code /home/pradeepkumar/ns-allinone-3.27/ns-3.27/src/wave/examples
Move this file to the scratch/ for inclusion of all modules. Step 1: Explanation of source code. Copy the file to scratch folder. This is just Part 1 of the VANET comparison

Part 2 Please watch the First Part before watching this video   https://www.youtube.com/watch?v=IJYeIpUqjQI&t=850s
Part 2 - Analysis of the results.
Please go through the first video (Part 1) and then watch this video (PArt 2)
#VANETs #NS3 #Routing
1. SUMO for web traffic (osmWebWizard.py) 2. Convert this into mobility.tcl file and t…

ns3 installation in Ubuntu 16.04

This post serves the installation instructions of ns3 in ubuntu 16.04 version. Some of my students are working in ns3, this post will benefit them in installing ns3.

OS Used: Ubuntu 16.04.4
ns3 version: ns3 version 3.27

The same procedure will be applied for OS like Debian, Linux Mint.

Fresh installation of Ubuntu 16.04 Let you try the fresh installation of ubuntu in your hard disk along with windows.
Installation of ns3 dependencies ns3 needs so many dependencies, developmental libraries, drivers, etc. so install all those
$] sudo apt update  $] sudo apt upgrade
$] sudo apt-get install build-essential autoconf automake libxmu-dev python-pygoocanvas python-pygraphviz cvs mercurial bzr git cmake p7zip-full python-matplotlib python-tk python-dev python-kiwi python-gnome2 python-gnome2-desktop-dev python-rsvg qt4-dev-tools qt4-qmake qt4-qmake qt4-default gnuplot-x11 wireshark
The above command make take some time to download, compile and install it, Be Patient. 
Installing ns3 Download the…

TORA Protocol in NS-2.35 (NS2)

This post tells you how to enable the TORA (Temporally ordered routing Algorithm) protocol in Network Simulator 2 (ns-2.35)

TORA is a protocol in wireless adhoc networks that works with timing parameters. NS-2.35 comes with the TORA protocol by default but it has to be tweaked manually to make it run.
This post will help you to do that.

You can watch this video for detailed instructions:


Step 1: Generate a Scenario for TORA protoco using NS2 Scenario Generator NSG Software.
We have created a tcl file using NSG2.1.jar

$] java -jar NSG2.1.jar

Three files have to be modified
~ns-2.35/tora/tora.cc~ns-2.35/tora/tora.h~ns-2.35/imep/imep.cc There are various websites that tells you how to configure TORA by making changes to the above three files.  Change 1: tora.h In the tora.h file, go to the end of the File before the agent completes, include these two lines

#include <classifier/classifier-port.h>
protected: PortClassifier *dmux_;

Change 2: tora.cc Open the tora.cc and include the follow…