Skip to main content

How to Write Makefile

Assume there are more number of source files to be compiled using a set of commands everytime is a tedious process. So there is a facility to compile everything at a stretch is by the use of a Makefile.
The makefile can be named as either “Makefile” or “makefile”.
Let me define four files for my simple application, create a new directory and store all the files given below
  • main.c  (which contains the main program)
  • sum.c (summing function is defined)
  • hello.c (print hello world)
  • function.h (function prototypes are declared)
//function.h
int sum(int,int);
void print_hello();
//hello.c
#include
#include “function.h”
void print_hello()
{
printf(“Hello World \n”);
}
//sum.c
#include “function.h”
int sum(int a, int b)
{
int c;
c=a+b;
return c;
}
//main.c
#include
#include “function.h”
int main()
{
int a=10,b=20,c;
print_hello();
c=sum(a,b);
printf(“The sum of two numbers is %d “,c);
return 0;
}
There are different methods of compiling this file
Method 1: (gcc command based)
gcc main.c sum.c hello.c –o pradeep
once you execute the above command, an executable named pradeep is created and you can see the output by typing./pradeep
Method 2: using Makefile

The basic makefile is composed of:
This syntax applied to example would look like:
target: dependencies
[tab] system command
all:
gcc main.c sum.c hello.c –o pradeep
to run this make file(the file name should be Makefile or makefile), execute the command
make
Method 3: using Makefile with dependencies
There may be a chance of using different targets in your makefile, this is because if you modify a single file in your project, you don’t have to recompile everything, only what you modified.
Here is an example
all: pradeep
hello: main.o sum.o hello.o
gcc main.o sum.o hello.o -o hello

main.o: main.c
gcc –c main.c

sum.o: sum.c
gcc –c sum.c

hello.o: hello.c
gcc –c hello.c


Method 4: using variables
CC=gcc
CFLAGS=-c -Wall

all: hello
hello: main.o sum.o hello.o
$(CC) main.o sum.o hello.o -o hello

main.o: main.c
$(CC) $(CFLAGS) main.c

sum.o: sum.c
$(CC) $(CFLAGS) sum.c

hello.o: hello.c
$(CC) $(CFLAGS) hello.c

Method 5:
With this brief introduction to Makefiles, you can create some very sophisticated mechanism for compiling your projects.
CC=gcc
CFLAGS=-c -Wall
LDFLAGS=
SOURCES=main.c hello.c sum.c
OBJECTS=$(SOURCES:.cpp=.o)
EXECUTABLE=hello

all: $(SOURCES) $(EXECUTABLE)
$(EXECUTABLE): $(OBJECTS)
$(CC) $(LDFLAGS) $(OBJECTS) -o $@

.c.o:
$(CC) $(CFLAGS) $< -o $@

If you understand this last example, you could adapt it to your own personal projects changing only 2 lines, no matter how many additional files you have !!!.
The above examples is tested only on linux and Windows also supports make utility (through nmake utility), the readers are advised to work on their own in Windows. the following link will show you the way to nmake utility












































Comments

Popular posts from this blog

Installation of ns2 in Ubuntu 18.04 - NS2 Tutorial # 2

ns2 installation in Ubuntu 18.04

Unlike earlier version of ubuntu, the 18,04 version does not support the direct installation of ns2, because of the latest C/C++ compiler (7.x), but the latest C/C++ compiler supported by ns2 is gcc-4.8. So this post and video tells you about the installation of gcc-4.8 version, then ns2 and then configuration.
Here are the steps, Please follow the video given below for more information.

$] tar zxvf ns-allinone-2.35.tar.gz


$] sudo apt install gcc-4.8 g++-4.8

if you have installed ubuntu just now, you can try these commands also in the beginning

$] sudo apt update
$] sudo apt install build-essential autoconf automake libxmu-dev

$] cd ns-allinone-2.35/ns-2.35
$] gedit Makefile.in
$] gedit linkstate/ls.h

line number 137, change erase to this->erase
$] cd ..
$] ./install

export PATH=$PATH:/home/pradeepkumar/ns-allinone-2.35/bin:/home/pradeepkumar/ns-allinone-2.35/tcl8.5.10/unix:/home/pradeepkumar/ns-allinone-2.35/tk8.5.10/unix
export LD_LIBRARY_PATH=$L…

ns3 installation in Ubuntu 16.04

This post serves the installation instructions of ns3 in ubuntu 16.04 version. Some of my students are working in ns3, this post will benefit them in installing ns3.

OS Used: Ubuntu 16.04.4
ns3 version: ns3 version 3.27

The same procedure will be applied for OS like Debian, Linux Mint.

Fresh installation of Ubuntu 16.04 Let you try the fresh installation of ubuntu in your hard disk along with windows.
Installation of ns3 dependencies ns3 needs so many dependencies, developmental libraries, drivers, etc. so install all those
$] sudo apt update  $] sudo apt upgrade
$] sudo apt-get install build-essential autoconf automake libxmu-dev python-pygoocanvas python-pygraphviz cvs mercurial bzr git cmake p7zip-full python-matplotlib python-tk python-dev python-kiwi python-gnome2 python-gnome2-desktop-dev python-rsvg qt4-dev-tools qt4-qmake qt4-qmake qt4-default gnuplot-x11 wireshark
The above command make take some time to download, compile and install it, Be Patient. 
Installing ns3 Download the…

AWK Scripts for NS2 to process data from Trace Files

AWK Scripts are very good in processing the data from the log (trace files) which we get from NS2. If you want to process the trace file manually, here is the detailHere is a sample of trace file from NS2 (However ns2 supports a new type of trace file also), but this post will make you understand the old trace format only.r 0.030085562 _0_ MAC  --- 0 message 32 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] r 0.030110562 _0_ RTR  --- 0 message 32 [0 ffffffff 1 800] ------- [1:255 -1:255 32 0] s 1.119926192 _0_ RTR  --- 1 message 32 [0 0 0 0] ------- [0:255 -1:255 32 0]
AWK Scripts are very good in processing the data column wise. For example
the first column in the above trace file represents r, s which indicates receive, sent respectively. If we want to trace the entire r and s alone from this trace file we can represent it as $1
So
$1 represents ACTION
$2 Time
$3 Node ID
$4 Layer
$5 Flags
$6 seqno
$7 type
$8 Size
$14 Energy (if the network nodes includes EnergyModel)To run the awk script in Li…