Skip to main content

Introduction to Linux Kernel

  • The Linux or the unix kernel is just developed under the microkernel architecture…
  • The Microkernel provides only the necessary minimum of functionality (inter process communication and the memory management) and can be accordingly be implemented in a small and compact form. Building on this microkernel, the remaining functions of the operating system are relocated to the autonomous processes communicating with the microkernel via a well defied interface.
  • Generally, microkernel systems have been created whose performance can be improved by the monolithic systems.  Since linux provides slow i386 architecture, so linux is developed using the monolithic design..
  • the code size of linux mainly occupied by the device drivers and similars. on the other hand, the central routines of process and memory management are relatively small and easily understood, with 13000 lines of C code in each
  • Thus LINUX is successfully tries to make use of the advantages of a microkernel architecture without giving up its original monolithic design.
States of a Process

Running – The task is active and running inthe non privileged user mode. This state can be interrupted only when there is a system call or the interrupt.
Interrupt Routine – The interrupt routine becomes active when the hardware signals an exception condition which may be new characters from the keyboard or any other hardware interrupt.
System calls – system calls are initiated by software interrupts
Waiting – the process is waiting for an external event. Eg. waiting for a button press…
Ready – the process is ready to run under the CPU, but some other process is currently running under the cpu.
Return from system call – This state is adopted after the end of the system call or end of the interrupts.

Comments

Popular posts from this blog

Installing ns3 in Ubuntu 22.04 | Complete Instructions

In this post, we are going to see how to install ns-3.36.1 in Ubuntu 22.04. You can follow the video for complete details Tools used in this simulation: NS3 version ns-3.36.1  OS Used: Ubuntu 22.04 LTS Installation of NS3 (ns-3.36.1) There are some changes in the ns3 installation procedure and the dependencies. So open a terminal and issue the following commands Step 1:  Prerequisites $ sudo apt update In the following packages, all the required dependencies are taken care and you can install all these packages for the complete use of ns3. $ sudo apt install g++ python3 python3-dev pkg-config sqlite3 cmake python3-setuptools git qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar gsl-bin libgsl-dev libgslcblas0 wireshark tcpdump sqlite sqlite3 libsqlite3-dev  libxml2 libxml2-dev libc6-dev libc6-dev-i386 libclang-dev llvm-

Installation of NS2 (ns-2.35) in Ubuntu 20.04

Installation of NS2 (ns-2.35) in Ubuntu 20.04 LTS Step 1: Install the basic libraries like      $] sudo apt install build-essential autoconf automake libxmu-dev Step 2: install gcc-4.8 and g++-4.8 open the file using sudo mode $] sudo nano /etc/apt/sources.list Include the following line deb http://in.archive.ubuntu.com/ubuntu bionic main universe $] sudo apt update $] sudo apt install gcc-4.8 g++-4.8 Step 3:  Unzip the ns2 packages to home folder $] tar zxvf ns-allinone-2.35.tar.gz $] cd ns-allinone-2.35/ns-2.35 Modify the following make files. ~ns-2.35/Makefile.in Change @CC@ to gcc-4.8 change @CXX@ to g++-4.8 ~nam-1.15/Makefile.in ~xgraph-12.2/Makefile.in ~otcl-1.14/Makefile.in Change in all places  @CC@ to gcc-4.8 @CPP@ or @CXX@ to g++-4.8 open the file: ~ns-2.35/linkstate/ls.h Change at the Line no 137  void eraseAll() { erase(baseMap::begin(), baseMap::end()); } to This void eraseAll() { this->erase(baseMap::begin(), baseMap::end()); } All changes made Step 4: Open a new termi

Square and Sinusoidal Waveform in 8051 Microcontroller

Waveforms in 8051 Microcontroller Square Wave To create a square wave generation using Delay. let us say we want to construct a 1khz square waveform the processor instruction cycle of 8051 is 1.085microseconds so for 1khz (1milli seconds =1/1khz), is 1ms/1.085microseconds = 921.6 (this value is set to the for loop) #include <reg51.h> void delay() { int i=0; for(i=0;i<922;i++) } void main() { P0=0xff; delay(); P0=0x00; delay(); } Sine Wave generation Since sine wave is plotted in a digital device the number of samples determines the smoothness, hence in this case, more the samples, smoother is the waveform. so a lookup table is been created to get the samples. in the following examples, there are totally 36 samples are taken, starting from 0 degrees to 360 degrees with a step of 10 degrees Degrees A = 5 (1+Sin theta) Where 5 is the full scale voltage DAC = 25.6 * A 0 5 128 30 7.5 192 60 9.3 239 90 10 256 etc…like this we need to calculate for 13 samples  with a ste