Skip to main content

Installing ns-3.37 and ns-3.35 in Ubuntu | Ubuntu 22.04 | NS3

Multiple Versions of ns3 in Ubuntu 22.04 In this post, we are going to install two versions of ns3 namely ns-3.35 and ns-3.37  My OS is : Ubuntu 22.04 LTS (Long Term Support) ns-3.35 uses waf and (./waf --run scratch/first)  ns-3.37 uses cmake  (./ns3 run scratch/first.cc) So we will install both the packages  Go through the video for complete instructions To start with  $ sudo apt update  $ sudo apt install build-essential autoconf automake libxmu-dev g++ python3 python3-dev pkg-config sqlite3 cmake python3-setuptools git qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar gsl-bin libgsl-dev libgslcblas0 wireshark tcpdump sqlite sqlite3 libsqlite3-dev  libxml2 libxml2-dev libc6-dev libc6-dev-i386 libclang-dev llvm-dev automake python3-pip libxml2 libxml2-dev libboost-all-dev  I have downloaded both the versions of ns3 fr

Hardware Redundancy

Hardware Redundancy
  • Use of additional hardware to compensate for failures
  • This can be done in two ways

    • Fault detection, correction and Masking. Multiple hardware units may be assigned to do the same task in parallel and their results compared. If one or more units are faulty, we can express this to show up as a disagreement in the results.

    • The second is to replace the malfunctioning units.

  • Redundancy is expensive, duplicating or triplicating the hardware is justified only in most critical applications
Two methods of hardware redundancy is given below are,
  • Static Pairing
  • N modular Redundancy (NMR)

Static Pairing


  • Hardwire processors in pairs and to discard the entire pair if one of the processors fails, this is very simple scheme

  • The Pairs runs identical software with identical inputs and should generate idientical outputs. If the output is not identical, then the pair is non functional, so the entire pair is discarded

  • This approach is depicted in the following figure, and it will work only when the interface is working fine and both the processors do not fail identically and around the same time.


[caption id="attachment_297" align="alignnone" width="500" caption="Static Pairing with Monitor"][/caption]

  • So the interface is monitored by means of a monitor which monitors the interface. If the interface fails, the monitor takes care and if the monitor fails, the interface takes care. If both interface and monitor fails, then the system is down. The monitor block is added as a dotted box in the above figure
N Modular Redundancy
  • It is a scheme for Forward Error Recovery.
  • It works with N processors instead of one and voting on their output and N is usually odd.
  • NMR can be illustrated by means of the following two ways

    • There are N voters and the entire cluster produces N outputs

    • There is just one voter


    [caption id="attachment_299" align="alignnone" width="607" caption="N Modular Redundancy"][/caption]


  • NMR clusters are designed to allow the purging of malfunctioning units. That is, when a failure is detected, the failed unit is checked to see whether or not the failure is transient. If it is not, it must be electrically isolated from the rest of the cluster and a replacement unit is switched on. The faster the unit is replaced, the more reliable the cluster.


    [caption id="attachment_298" align="alignnone" width="419" caption="Self Purging"][/caption]

  • Purging can be done either by hardware or by the operating system. Self purging consists of a monitor at each unit comparing its output against the voted output. If there is a difference, the monitor disconnects the unit from the system. The monitor can be described as a finite state machine with two states connect and isolate. There are two signals, diff which is set to 1 whenever the module output disagrees with the voter output and reconnect, which is a command from the system to reconnect the module.

Comments

Popular posts from this blog

Installation of NS2 (ns-2.35) in Ubuntu 20.04

Installation of NS2 (ns-2.35) in Ubuntu 20.04 LTS Step 1: Install the basic libraries like      $] sudo apt install build-essential autoconf automake libxmu-dev Step 2: install gcc-4.8 and g++-4.8 open the file using sudo mode $] sudo nano /etc/apt/sources.list Include the following line deb http://in.archive.ubuntu.com/ubuntu bionic main universe $] sudo apt update $] sudo apt install gcc-4.8 g++-4.8 Step 3:  Unzip the ns2 packages to home folder $] tar zxvf ns-allinone-2.35.tar.gz $] cd ns-allinone-2.35/ns-2.35 Modify the following make files. ~ns-2.35/Makefile.in Change @CC@ to gcc-4.8 change @CXX@ to g++-4.8 ~nam-1.15/Makefile.in ~xgraph-12.2/Makefile.in ~otcl-1.14/Makefile.in Change in all places  @CC@ to gcc-4.8 @CPP@ or @CXX@ to g++-4.8 open the file: ~ns-2.35/linkstate/ls.h Change at the Line no 137  void eraseAll() { erase(baseMap::begin(), baseMap::end()); } to This void eraseAll() { this->erase(baseMap::begin(), baseMap::end()); } All changes made Step 4: Open a new termi

Installing ns3 in Ubuntu 22.04 | Complete Instructions

In this post, we are going to see how to install ns-3.36.1 in Ubuntu 22.04. You can follow the video for complete details Tools used in this simulation: NS3 version ns-3.36.1  OS Used: Ubuntu 22.04 LTS Installation of NS3 (ns-3.36.1) There are some changes in the ns3 installation procedure and the dependencies. So open a terminal and issue the following commands Step 1:  Prerequisites $ sudo apt update In the following packages, all the required dependencies are taken care and you can install all these packages for the complete use of ns3. $ sudo apt install g++ python3 python3-dev pkg-config sqlite3 cmake python3-setuptools git qtbase5-dev qtchooser qt5-qmake qtbase5-dev-tools gir1.2-goocanvas-2.0 python3-gi python3-gi-cairo python3-pygraphviz gir1.2-gtk-3.0 ipython3 openmpi-bin openmpi-common openmpi-doc libopenmpi-dev autoconf cvs bzr unrar gsl-bin libgsl-dev libgslcblas0 wireshark tcpdump sqlite sqlite3 libsqlite3-dev  libxml2 libxml2-dev libc6-dev libc6-dev-i386 libclang-dev llvm-

VPL Jail Server Installation | Virtual Programming Laboratory with Moodle

Virtual Programming Laboratory (VPL)  This post tells you how to install VPL Jail Server Installation in Ubuntu 20.04 and how to configure it using Moodle Learning Management System. VPL - Virtual Programming Laboratory  For full installation with complete description, follow the video What is VPL? VPL is Virtual Programming Laboratory which is a tool for programming assignments, evaluation and running of programs. The programming languages supported by VPL is C, C++, Java, Python, Perl, PHP, NodeJS, Verilog, etc. Step 1 - Install  VPN Jail Server Installation  My Server configuration  16GB RAM and 16 Core PRocessor (Intel Xeon)  Virtual Machine  Ubuntu 20.04 (64 bit OS). To download the softwares  https://vpl.dis.ulpgc.es/index.php/home/download  Unzip or untar the above file in the home folder (in my case it is /home/tspradeepkumar/ ) $ cd vpl-jail-system-2.7.2/ $ sudo ./install-vpl-sh VPL Jail Server Installation This will take some time based on your internet connection: To Star